

Das Ziel

URBANE FARM

Entwickelt wird

EIN URBANES UND KREISLAUF-BASIERTES FARMKONZEPT

ZUR ÖKONOMISCHEN UND RESSOURCEN-SCHONENDEN PRODUKTION VON NAHRUNGSMITTELN, UM NACHHALTIGE UND GESUNDE ERNÄHRUNG ZU ERMÖGLICHEN.

Die Ausgangslage

VERBESSERUNGSBEDARF

Bevölkerungswachstum, zunehmende Verstädterung, Klimawandel, ausgelaugte Böden und überfischte Weltmeere die Produktion unserer Nahrungsmittel wird zu einer immer größeren Herausforderung. Neue Wege und konkrete Lösungen sind gefragt!

2020

70%

des globalen Wasserverbrauchs und 24% der Treibhausgasemissionen gehen auf das Konto der koventionellen Landwirtschaft. *

2050

Um 30%

wird der Wasserverbrauch der Landwirtschaft bis 2050 zusätzlich steigen.

202 MIO

Tonnen. So hoch ist der weltweite Proteinbedarf der ca. 7,3 Mrd Menschen, 43% davon tierischen Ursprungs.

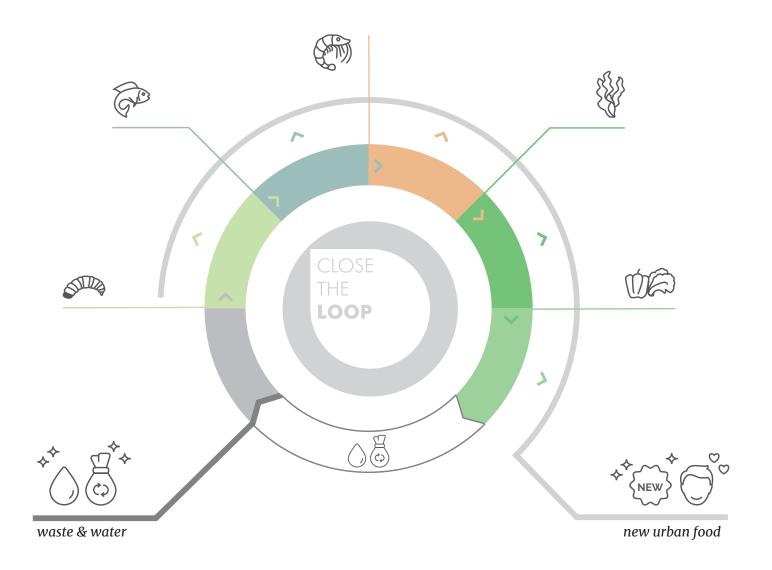
Um 100%

wird die Nachfrage nach hochwertigem, tierischem Protein bis 2050 steigen.

1 VON 9

Menschen leidet laut der Welternährungsorganisation an Hunger.

Um 50%


müsste die weltweite Nahrungsmittelproduktion bis 2050 steigen, um die mehr als 9 Milliarden Menschen zu ernähren.*

2,1MRD

Menschen haben keinen regelmäßigen Zugang zu sauberem Trinkwasser.

Um bis zu **30%**

wird der weltweite Trinkwasserbedarf bis 2050 steigen.

Das Konzept

CLOSE THE **LOOP**

Das Konzept folgt 2 Prämissen: Aus jedem Produktionsschritt sollen sich sowohl Beiträge für die menschliche Nahrungskette als auch Ausgangsstoffe für den jeweils nächsten Produktionsschritt ableiten lassen.

Auf der Basis von biologisch verwertbaren Sekundärrohstoffen, Wasser und Energie wird der Produktionskreislauf gestartet, und über eine Insektenzucht die Verbindung zu Fischen und Pflanzen geschaffen. Durch die Ergänzung möglicher Module wie der Zucht von Krustentieren kann der Kreislauf erweiter werden. Die am Ende anfallende Grünabfälle, können zum Anfang zurückgeführt werden und vervollständigen schließlich den Kreislauf: close the loop!

Ausgangsstoff

WATER& WASTE

Um so nachhaltig wie möglich zu Produzieren soll innerhalb der kreislaufbasierten Anlage jeder Produktionsschritt und jeder einkommende und ausgehende Stoff so effizient und ressorucenschonend wie möglich genutzt werden. Um die Idee der Re-, Parallel- und Mehrfachnutzung von Ausgangsstoffen konsequent weiterzudenken, wird auf der Basis von biologisch verwertbaren Sekundärrohstoffen, Wasser und Energie der Produktionskreislauf gestartet und damit kostbare Ressourcen in einen neuen Kontext gesetzt.

Modul I

INSEKTENPROTEIN

Um den Proteingehalt von Fischfutter zu gewährleisten, nutzt die Industrie Fischöl und –mehl. Betrachtet man die Prognosen zur Überfischung der Weltmeere, wird deutlich, dass dies ein Zustand ist, den wir uns in Zukunft nicht mehr leisten können.

Diese Proteinlücke kann mittels Insekten geschlossen werden. Deren Zucht ist ökonomisch, ressourcenschonend und bietet eine gesunde, biologische Proteinquelle-auch für den Menschen. Pflanzenreste, die in unserem Kreislauf unausweichlich entstehen, dienen ihnen als Nahrungsgrundlage. Mittlerweile sind Insekten auch im europäischen Raum als interessante Alternative zu Fleisch in Form von Burger-Patties und Proteinriegeln angekommen.

Modul II

FRISCH**FISCH**

Die in den Aquakulturen gezüchteten Fische dienen zum einen als hochwertige Proteinquelle, zum anderen werden ihre Ausscheidungsprodukte durch nitrifizierende Bakterien zu Pflanzendünger umgewandelt. (Organisches Recycling) Diese Kombination aus Fisch- und Pflanzenzucht in einem Nährstoff- und Wasserkreislauf wird Aquaponik genannt. Eine besonders ressourcenschonende, vor allem wassersparende Form der urbanen Lebensmittelproduktion. Durch antiproportionales Grundflächenwachstum in der Relation von Hydrokultur und Aquakultur lassen sich wünschenswerte Skalierungseffekte erzielen.

Modul III

KRUSTENTIERE

Die Aquakultur kann um ein sinnvolles, proteinreiches Modul ergänzt werden: Krustentiere. Diese bewegen sich durch Kriechen auf dem Boden fort und können durch ihre Verwertung der sekundären Makronährstoffe der Fische in die Zucht eingebettet werden.

Der Lebensraum beider Arten kollidiert keineswegs. Denkbar sind in diesem Zusammenhang Süßwasser-Garnelen oder auch Edelkrebse, die artgerecht und ohne Antibiotika dort gezüchtet werden können, wo sie auch konsumiert werden. Ohne lange Lieferwege und Kühlketten. Als Premiumlebensmittel leisten frische Krustentiere zudem einen hohen Deckungsbeitrag.

Im Vergleich

PROTEINQUELLEN

Der Vergleich unterschiedlicher, tierischer Proteinquellen für den Menschen zeigt deutlich ökologische sowie ökonomische Unterschiede und spricht für ein Alternativangebot, das u.a. aus Insekten bestehen kann. Während bei Insekten die Sekundärrohstoffen als Futtermittel eingesetzt werden können, konkurriert vor allem der Anbau für das Futter von Rind, Schwein und Geflügel mit Anbauflächen für Humanernährung.

		Caro			
	INSEKTEN*	FISCH*	GEFLÜGEL	SCHWEIN	RIND
FCR Futteraufwand in kg je kg Lebendmassezunahme	1,4	1,4	2,5	5,0	8,0
Futtermenge, um 1 kg essbares Fleisch herzustellen	2,1 kg	2,1 kg	4,5 kg	9 kg	25 kg
Essbarer Anteil	80%	50%	55%	55%	40%
Benötigte Fläche pro kg essbares Protein	20 m ²	10 m ²	50 m ²	60 m ²	200 m ²
CO² Emission pro erzeugtem kg Fleisch	3:1	6:1	4:1	4:1	12:1

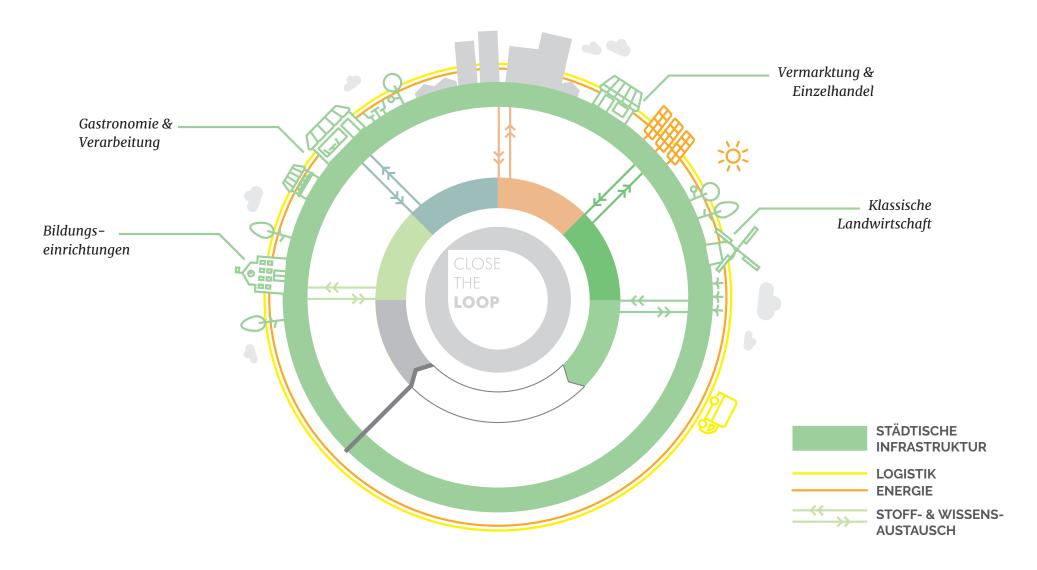
^{*} hier Bezug auf Larven der Schwarzen Soldatenfliege und Tilapia.

Modul IV

ALGENARTEN

Im Bereich der Makro- und Mikronährstoffe punktet die Alge als optimaler Lieferant. Kaliumchlorid, Vitamin B12 und Protein sind hier in hohen Mengen zu finden. Ihr Anbau ist nachhaltig und hat, im Gegensatz zu Rindfleisch als Proteinquelle, eine herausragende

Ökobilanz. Im Vergleich: Die Produktion von Rindfleisch benötigt 800-mal mehr Wasser, bei gleicher Menge an Protein. Weitere Vorteile sind das schnelle Wachstum bei geringem Pflegeaufwand sowie eine lange Haltbarkeit, je nach Art der Weiterverarbeitung. Sie dienen nicht nur dem Menschen als Nahrungsergänzung, sondern können auch der Farm als Nahrungsmittel in die Aquakultur rückgeführt werden.


Modul V

HYDROPONIK

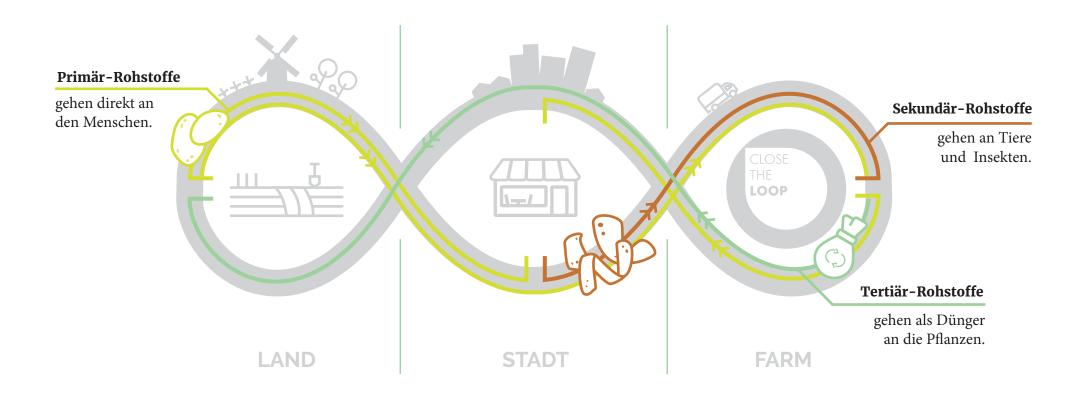
Anders als in der klassischen Landwirtschaft, bei der Obst und Gemüse in der Erde wurzeln, verzichtet die Hydroponik weitestgehend auf diesen Rohstoff. Sie nutzt Wasser, das mit Nährstoffen angereichert ist und somit an jede Pflanze optimal angepasst werden kann.

Die Aquakulturen und die nitrifizierenden Bakterien versorgen die Hydroponik mit essenziellen Nährstoffen.

Die benötigte Menge an Wasser reduziert sich um 75% im Gegensatz zur klassischen Landwirtschaft, da kein Sickerwasser entsteht. Zudem kann das bei der Evapotranspiration freigewordene Wasser zurück in den Kreislauf geführt werden und vertikale Anbauverfahren erhöhen die Flächeneffizienz.

Die Innovation im Kontext

CIRCULAR CITY


Um zur Klimaneutralität beizutragen, bestehende Logistikketten aufzubrechen und für Konsumenten erreichbar zu sein, wird mit der urbanen Farm der Ort der Produktion so nah wie möglich an den Ort des Konsums gebracht.

Dies ermöglicht und erfordert gleichzeitig die Zusammenarbeit mit Gastronomien, Resellern und verarbeitenden Gewerben sowie zirkulär gedachte Stoffströme und Logistikprozesse, die alle Teilnehmenden und Verbraucher*innen untereinander verknüpfen.

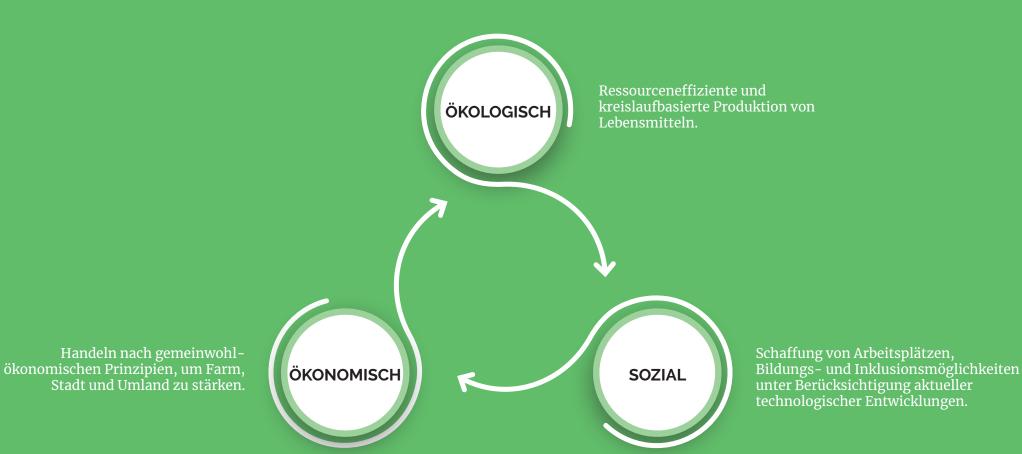
Circular City

REISE DER ROHSTOFFE

Bisherige lineare Stoffströme vom Land in die Stadt werden überflüssig. Die Produktionskreisläufe urbaner Farmen dienen als Motoren, um einen zyklischen Fluss von Rohstoffen zwischen Stadt und Land anzutreiben.

Mega-Trends

NEW URBAN FOOD


Eine breite Produktpalette und die lokale Produktion von **new urban food** treffen den Nerv der Zeit. Mega-Trends der Neo-Ökologie wie die Slow-Culture, Urban Farming, Zero-Waste oder der Bio-Boom sind mehr als zeitlich begrenzte Strömungen und formen einen rapiden Wandel hin zu einer wachsenden Circular Economy.

New urban food verbindet globale Trendentwicklungen und denkt sie konsequent weiter. Urbane Produktion ist die logische Fortsetzung des Regionaltrends hin zur aufkommenden buy-local Bewegung. Durch die Kopplung dieser Trends mit einem zirkulären Verfahren verbessert sich die Ökobilanz städtischer Strukturen. Kurze und dynamische Lieferketten sind dabei nicht nur ökologisch vorteilhaft, sondern erhöhen die systemische Resilienz und bewahren den Nährstoffgehalt der Produkte. Dies stärkt das Vertrauen der Konsumenten und bindet Kaufkraft in der Region.*

Unser Anspruch

AUF ALLEN EBENEN NACHHALTIG

Unter dem Forschungsprojekt mit dem Titel **CLOSE THE LOOP – new urban food** soll ein ganzheitliches, erweitertes Konzept eines Produktionskreislaufs entstehen, das gleichermaßen auf ökologischer, ökonomischer sowie sozialer Ebene für eine nachhaltige Lebensmittelproduktion in der Stadt sorgt.

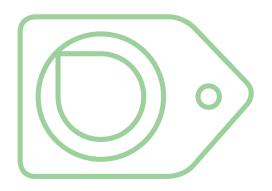
16

Unser Weg

ROAD MAP

Mit dem Ziel, eine urbane Farm in Wuppertal zu bauen, arbeiten wir bis Ende 2021 an der konzeptionellen Ausgestaltung und der Entwicklung einer Blaupause.

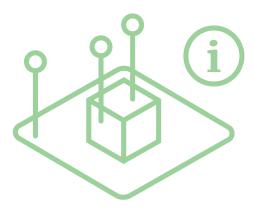
Projektstart	Netzwerk erweitern	Identifizierung möglicher Module	Experten Workshops
2020			


Food-Tests	Nutzerakzeptanz	Hochzeit der Module
FarmBox		

Unsere Ergebnisse

WISSEN SICHTBAR MACHEN

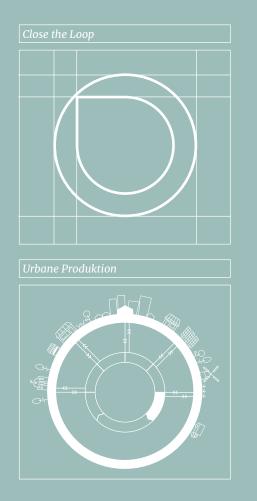
Gesammeltes Wissen und gewonnene Erkenntnisse werden aufbereitet und sowohl intern als auch extern verschiedentlich zugänglich gemacht. Dies gewährleistet einen breiten Austausch von Expertise und die Einbindung vielfältiger Akteure.

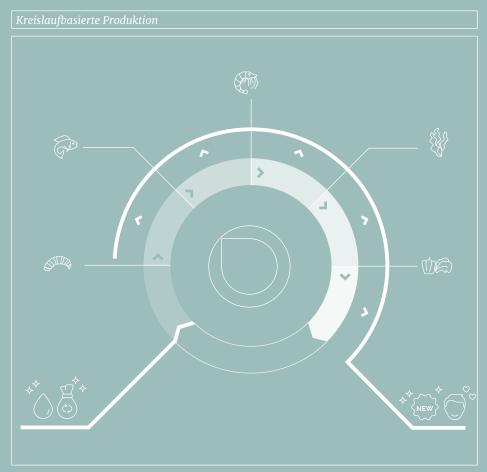

FARM LABEL

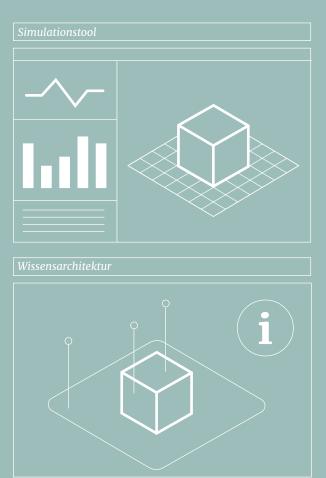
Die Implementierung eines Farm-Labels dient zur Kennzeichnung der ressourcenschonenden Lebensmittelproduktion, unterstützt bei der Kommunikation und wird im engen Austausch mit den Konsumenten realisiert.

SIMULATIONS TOOL

Die Entwicklung eines Werkzeugs zur Simulation von Stoffströmen und Berechnung von Skalierungen unterstützt bei der Planung von kreislaufbasierten Farmanlagen und ihrer diversen Module.


WISSENS-ARCHITEKTUR


Der Aufbau einer digitalen Datenbank unterstützt die interne sowie externe Zugänglichkeit von Wissen und hilft beim Zusammentragen und Kommunizieren von notwendigen Informationen.

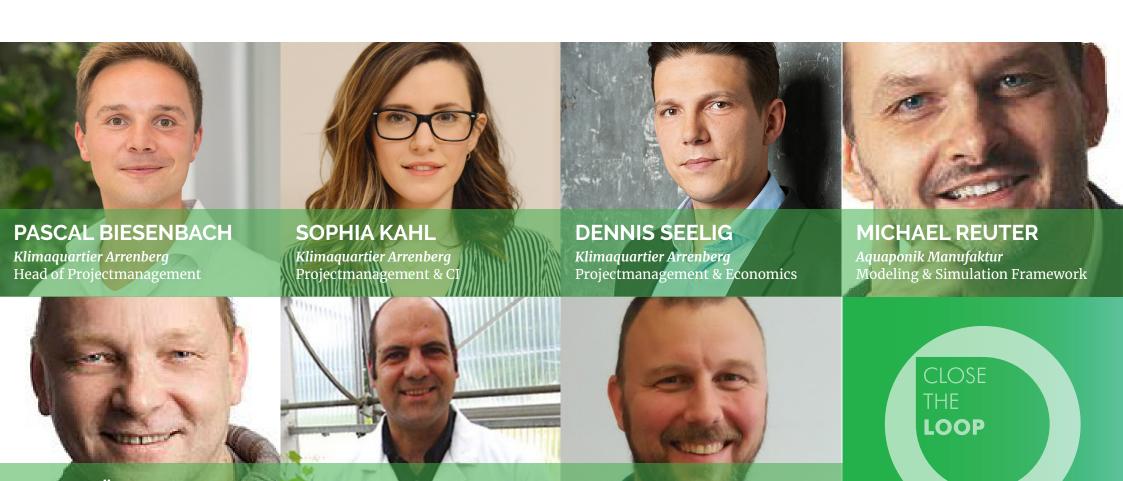

Das Ziel 2021

BLUE **PRINT**

Die aufgebaute Wissensarchitektur sowie entwickelte Simulationstools, CI- und ökonomische Kriterien werden in einer Blaupause zusammengefasst. Diese Machbarkeitsstudie dient im Anschluss an das Projekt zur Skalierung des Konzeptes innerhalb der Region und darüber hinaus.

Der Kontext

KLIMAQUARTIER


Als gemeinnützig tätiger Verein *Aufbruch am Arrenberg* haben wir uns 2014 das Ziel gesetzt, bis 2030 einen gesamten Stadtteil klimaneutral zu entwickeln und ein sozial verträgliches Leben und Arbeiten zu schaffen. Dieses Ziel und seine ersten Umsetzungen wurden 2016 von der KlimaExpo.NRW ausgezeichnet.

Im Rahmen des Projektes *Klimaquartier Arrenberg*, in dem die Themen urbanes Energiemanagement, neue Mobilitätskonzepte und ressourcen schonende Ernährung bespielt werden, entwickelte sich erstmals 2016 das Ziel einer urbanen Kreislauffarm. Sie soll in das städtische Ökosystem eingebettet sein und dabei Produzieren, Arbeiten und Wohnen synergetisch verknüpfen.

Dürfen wir uns kurz vorstellen?!

DAS **TEAM**

Gemeinsam mit unseren Forschungspartnern wollen wir für ein Umdenken in der Gesellschaft sowie ein Bewusstsein für bewusste Ernährung und nachhaltige Lebensmittelproduktion erzeugen.

INGO BLÄSER Aquaponik Manufaktur Sizingtool

RODERICH GARMEISTER Fachhochschule Südwestfalen Soest Material Flow Analysis

ROLF MORGENSTERN Fachhochschule Südwestfalen

Knowledge Architecture

Auf eine gute Zusammenarbeit!

KOOPERATIONSPARTNER

Solingen

VIELENDANK

Mehr Informationen über den Verein und das Projekt finden Sie auf www.arrenberg.app

> Kontaktanfragen an Sophia Kahl kahl@klimaquartier-arrenberg.de 0049 176 / 311 494 31

Das Projekt "Urbane Produktion im Bergischen Städtedreieck – Wettbewerbsfähigkeit, Innovation und Quartiersentwicklung / Close The Loopnew urban food" wird aus Mitteln des Europäischen Fonds für regionale Entwicklung(EFRE) und des Landes Nordrhein-Westfalen gefördert:

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Bildmaterial

QUELLENVERZEICHNIS

S.1 S.11

serviceportal.wuppertal.de

Foto von cottonbro www.pexels.com/de-de/@cottonbro

Foto von Karsten Würth unsplash.com/photos/UbGYPMbMYP8

S.12

S.2Graphik auf Basis von foodurbanism.org/growing-power-vertical-farm

Foto von Jatuphon Buraphon www.pexels.com/de-de/@jatuphon-buraphon-110709

cal-farm **S.6** S.15

Foto von Markus Spieske unsplash.com/@markusspiske

Foto von Sylvie Tittel unsplash.com/@misssinterpreted

S.7

Foto von Maddi Bazzocco unsplash.com/@maddibazzocco

Foto von Louis Hansel unsplash.com/@louishansel

Foto von Annie Spratt unsplash.com/@anniespratt

S.8

Foto von Artur Rotkowski unsplash.com/@alienowicz

Foto von Hoan Vo unsplash.com/@hoanvokim

S.9

Fotos von Tom Fisk www.pexels.com/de-de/@tomfisk **S.21** Foto von Sven Engelhardt

Grafiken von Sophia Kahl